Airborne plant-plant communication

Keith Chamberlain

Department of Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden, AL5 2JQ, UK.
Email: keith.chamberlain@rothamsted.ac.uk

Received: 30 July 2013 | Accepted by Sergey A. Shavnin: 31 March 2014 | Published on line: 30 April 2014

Abstract

Following the early observations of volatile signalling between plants in the mid-1980s, there was much debate concerning the validity of the results and the reality of the phenomenon. The substantial literature that covers more than 25 plant species as emitters and/or receivers of volatile compounds is reviewed. The paper also proposes that the passive sorption of small lipophilic molecules from the vapour phase occurs in all higher plants, although the results of such communication are only observable if there is a measurable response.

Keywords: interplant signalling, intraplant signalling, multitrophic interactions, plant volatiles, plant-insect interactions, plant volatiles

Introduction

Talking to plants as a means to improve their health has long been advocated, usually by people with a high public profile but rarely by those with a scientific background. As plants do not have organs that function as ears or mouths the idea that they can hear what might be spoken to them or speak to each other seems ridiculous. However, there are other ways of communicating than by speech. Mankind has long used smoke, flags, hand signals, etc. to indicate their needs and intentions. Many, if not most, animals also use chemical signals, or semiochemicals, that mark trails or territory, intimidate other creatures, warn their conspecifics of danger, indicate their state of sexual readiness, help to find a site for laying eggs or giving birth and that help to locate a source of food, be it animal or vegetable. Insects are particularly renowned for using chemical signals in these ways, and frequently their anatomy is supremely adapted for this purpose, hence the great variety, in shape and size, of insects’ antennae which contain the majority of their chemical sensors, especially for the detection of volatile compounds.

Plants emit volatile chemicals that are produced as part of their secondary metabolism, not only from their flowers where they serve to attract pollinating insects (Knudsen et al., 2006; Schiesl, 2010; Dudareva et al., 2013) but also from their vegetative parts (Dudareva et al., 2006; Pichersky et al., 2006). These compounds can be simple gases, such as oxygen, ethylene
and water vapour, as well as an array of small lipophilic molecules containing from 5 to 20 carbon atoms that include the so called green-leaf volatiles (C₆ aldehydes, alcohols, and esters), terpenes (C₁₀ and C₁₅ hydrocarbons) and their derivatives, and phenylpropanoids and benzenoids that are derived from the amino acid phenylalanine (Maffei et al., 2011).

Although emitted only in trace amounts from healthy, undamaged plant tissue the green-leaf volatiles, together with some terpenoids, are released by plants in significantly increased amounts during a rapid response to stress caused by mechanical damage, for example producing the familiar smell of new mown grass. The same response is induced by biotic stress which may have many causes including feeding by herbivorous insects and mites on vegetative parts (Hare, 2011) and plant diseases caused by fungi (Piel et al., 1997; Kishimoto et al., 2008), bacteria (Croft et al., 1993; Huang et al., 2003; Yi et al., 2009) or even viral infections (Eigenbrode et al., 2002). The C₆ compounds, which are derived from the cleavage of membrane lipids, mainly linoleic and linolenic acids, by the action of lipoxygenase and other enzymes (D’Auria et al., 2007; Scala et al., 2013), are released quickly as a result of damage to cell membranes. However, because of their high volatility, they are considered not to be stored in specialised structures such as oil ducts or glandular trichomes, unlike the terpenes that are also emitted rapidly after herbivore feeding (Paré and Tumlinson, 1997; Ormerño and Fernandez, 2012).

The initial emission of volatile compounds by plants in response to herbivory is followed by a second phase of volatile release that may not start until several hours or more after feeding begins but could continue for as long as the attack lasts and maybe longer. The compounds that are emitted at this stage are synthesised de novo, by a number of biosynthetic routes, although they may be the same as some of those produced in the rapid response to damage (Paré and Tumlinson, 1999; Kigathi et al., 2009). Some insects are known to elicit the synthesis and release of these chemicals by introducing oral secretions into the plant (Mattiacci et al., 1995; Alborn et al., 1997; Schmelz et al., 2009).

Airborne plant-insect interactions

Many of the compounds emitted by plants, following attack by herbivores, have been found to have defensive roles against the herbivores and these may be direct or indirect effects. Direct defence involves volatile compounds that repel or deter other insects, whether of the same or different species, from landing on the emitting plant. For instance, feeding by caterpillars of the tobacco budworm moth, *Heliothis virescens* Fabricius, on the leaves of tobacco plants, *Nicotiana tabacum* L., induces the plant to emit volatiles, particularly during
the scotophase, that are repellent to female moths of the same species seeking oviposition sites (De Moraes et al., 2001). Volatile defence compounds have been shown to be induced not only by chewing insects but also by piercing, sucking insects such as thrips and the phloem-feeding aphids, although the blend of volatiles induced by them is usually different to that emitted in response to the chewing insects (Delphia et al., 2007; Gosset et al., 2009; Blande et al., 2010).

Indirect defence occurs when the volatiles released by the plant in response to herbivore feeding serve as attractants for enemies of the herbivore such as predators and parasitoids. Such tritrophic interactions have been reported for many plant species that include Arabidopsis thaliana L. (van Poecke and Dicke, 2004), Brassica oleracea L. (Agelopoulos and Keller, 1994a; 1994b), Cucumis sativus L. (Takabayashi et al., 1994), Gossypium hirsutum L. (Röse et al., 1998), N. tabacum L. (De Moraes et al., 1998), Phaseolus lunatus L. (Shimoda et al., 1997), P. vulgaris L. (Birkett et al., 2003), Pinus sylvestris L. (Mumm et al., 2003), Solanum lycopersicum L. (Farag and Paré, 2002) and Zea mays L. (Turlings et al., 1990). Furthermore, there are instances when herbivore oviposition on plant leaves induces changes in the emission of volatiles such that egg parasitoids are attracted (Hilker and Meiners, 2006). Indirect defence can also take place below ground as exemplified by the attack of western corn rootworm, Diabrotica virgifera virgifera LeConte, on the roots of maize, which induces release of the sesquiterpene (E)-caryophyllene into the soil and so attracts an entomopathogenic nematode that infects and kills this very serious pest of maize (Rasmann et al., 2005; Degenhardt et al., 2009).

There have been a number of comprehensive reviews of the literature covering plant-insect interactions, in general, over the years, two of the most recent being those by Scala et al., (2013) and Das et al., (2013), and also some more specifically concerning indirect defence such as those by van Poecke and Dicke (2004) and Heil (2008).

Intraplant signalling

There is considerable evidence that volatile chemicals that act in defence of the plant are induced systemically, undamaged leaves remote from the site of herbivore attack also emitting defensive compounds (Turlings and Tumlinson, 1992; Röse et al., 1998; Mattiacci et al., 2001). It was assumed that a signal was transmitted through the plant via the vascular system, and there is evidence for this (Gómez and Stuefer, 2006). However, Orians (2005) drew attention to the fact that sometimes the induction was more widespread than expected from the vascular architecture and suggested that volatile compounds emitted from the site of attack induce a similar response in parts of the plant remote from the damage. This was subsequently shown to
be the case in a number of plants including sagebrush, *Artemisia tridentata* Nutt. (Karban et al., 2006), a hybrid poplar, *Populus deltoides* Marshall ×*P. nigra* L., (Frost et al., 2007), Lima bean, *Phaseolus lunatus* L., (Heil and Bueno, 2007), and highbush blueberry, *Vaccinium corymbosum* L. (Rodriguez-Saona et al., 2009).

Only a small mental step is needed to proceed from admitting volatile signalling between different parts of the same plant to accepting the possibility of interplant communication, although in practice evidence for the latter preceded the former.

Interplant signalling

It is only to be expected that neighbouring plants are able to eavesdrop on volatile intraplant signals and, if they have the necessary facility, to respond to the message that those signals are conveying. This is more likely if the neighbours are of the same species, because they are able to respond in exactly the same way as the remote parts of the emitting plant, but it is not necessarily so.

The first observation of plant response to airborne signals from nearby plants under attack by herbivores was reported in 1983 for Sitka willows, *Salix sitchensis* Sanson ex Bong. (Rhoades, 1983). It was found that western tent caterpillars, *Malacosoma californicum pluviale* Dyar, feeding on the leaves of un-infested willow trees in close proximity to caterpillar-infested ones grew much more slowly than those feeding on trees further away and the author suggested that this was due to airborne pheromonal substances. He did, however, conclude his report with the statement, “The burden of proof for such an unprecedented effect should be high, and the foregoing experiments with willows and tent caterpillars cannot be considered to constitute such proof.” In laboratory conditions, Baldwin and Schultz (1983) carried out experiments that supported Rhoades’ suggestion. Using potted plants of Carolina or Canadian poplar, *Populus canadensis* Moench., taken from a single clonal network, they removed about 7% of total leaf area of some plants by tearing. Analysis showed that both the treated plants and undamaged plants in the same enclosure had increased levels and rates of synthesis of phenolic compounds. Similar results were obtained with seedlings of sugar maple, *Acer saccharum* Marshall, which were undamaged but showed increased levels of phenolics and hydrolysable and condensed tannins in response to damage to neighbouring plants. The authors concluded that an airborne cue originating in damaged tissue may stimulate biochemical changes in neighbouring plants.

Both of these early reports on interplant signalling were met with some scepticism and alternative explanations for the results obtained were published a couple of years later by Fowler and Lawton (1985), who pointed out that the study by Baldwin and Schultz was
statistically flawed and suggested that the results of Rhoades were not due to airborne pheromonal substances but instead to tiny airborne infectious stages of a disease affecting the tent caterpillars. The great ‘talking tree’ debate continued in the literature for the next ten years or so. Fowler and Lawton (1985) included in their paper the results of an experiment using artificially damaged birch saplings, *Betula pubescens* Ehrh., that provided no evidence of plant-to-plant signalling. However, another study found sound evidence of volatile transfer between Arctic downy birch trees, *Betula pubescens* subsp. *tortuosa*, infested with autumnal moth caterpillars, *Epirrita autumnata* Borkhausen, and healthy trees of the same species, in which the magnitude of the effect decreased with distance from the infested trees (Haukioja *et al*., 1985). Most of the reports that followed supported the idea that volatile chemicals induced by herbivory or fungal infection could have a measurable effect on neighbouring undamaged plants, though there were some in which the results were inconclusive and others that sought and failed to find evidence of such interactions. For example, Lin *et al.* (1990) found no evidence of interplant transfer of inducing signals in soybean, *Glycine max* L., following herbivory by the soybean looper, *Pseudoplusia includens* Walker, on neighbouring conspecifics. Supporting evidence was found in a number of plant species including the following: in cotton, *Gossypium hirsutum* L., undamaged leaves showed a significant increase in heliocides, C25 terpenoid aldehydes, following exposure to volatiles from leaves infected with the fungus *Aspergillus flavus* Link (Zeringue, 1987); tobacco aphids showed reduced fecundity when feeding on the leaves of tobacco, *N. tabacum*, that had been exposed to the volatiles from mechanically damaged leaves of tomato, *Solanum lycopersicum* L. (Hildebrand *et al*., 1993); the volatiles from damaged tomato plants also inhibited the in vitro germination of apple pollen (Hamiton-Kemp *et al*., 1991); undamaged cotton plants attracted predatory mites, *Phytoseiulus persimilis* Athias-Henriot, after they were exposed to the volatiles from cotton plants under attack by the herbivorous spider mite *Tetranychus urticae* Koch (Bruin *et al*., 1992).

During the next two decades there were many more reports in the literature that contained generally incontrovertible evidence of plant responses to exogenous volatile compounds or blends emanating from conspecific or heterospecific plants. Table 1 summarises instances of plants responding to the volatile blends emitted by other plants, in which the actual chemicals involved are not identified, and Table 2 shows those plants that have been found to respond to individual compounds, all of which have been detected in the volatile emissions of plants. Included in these tables are instances of priming, that is, when plants demonstrate the
ability to respond more rapidly to subsequent attacks by herbivores or pathogens than to the initial attacks. There are many reports in the literature, reviewed by Frost et al. (2008a), of such effects being induced by exogenous volatile signals.

Table 1. Summary of reports of interplant communication since 1995

<table>
<thead>
<tr>
<th>Receiver plant</th>
<th>Emitter plant</th>
<th>Damage</th>
<th>Receiver response</th>
<th>Lab/Field</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Achyraechna mollis Schauer</td>
<td>A. mollis</td>
<td>mechanical</td>
<td>Varying effects on herbivory and lifetime fitness depending on genetic relationships (Factorial expt.)</td>
<td>F</td>
<td>Pearse et al., 2012</td>
</tr>
<tr>
<td>Lupinus nanus Douglas ex Benth.</td>
<td>L. nanus</td>
<td>mechanical</td>
<td>reduced herbivory; reduced oviposition</td>
<td>L & F</td>
<td>Dolch & Tscharntke, 2006</td>
</tr>
<tr>
<td>Sinapis alba L.</td>
<td>S. alba</td>
<td>mechanical</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alnus glutinosa (L.) Gaertn.</td>
<td>A. glutinosa</td>
<td>mechanical</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arabidopsis thaliana L.</td>
<td>A. thaliana</td>
<td>mechanical</td>
<td>increased attraction of parasitoid</td>
<td>L</td>
<td>Shiojiri et al., 2012</td>
</tr>
<tr>
<td>"</td>
<td>Magnolia grandiflora L. (flower)</td>
<td>none</td>
<td>induction of defence-related genes</td>
<td>L</td>
<td>Matthes et al., 2011</td>
</tr>
<tr>
<td>"</td>
<td>Phaseolus lunatus L.</td>
<td>herbivory</td>
<td>upregulation of genes in ethylene and jasmonic acid pathways</td>
<td>L</td>
<td>Zhang et al., 2012</td>
</tr>
<tr>
<td>Artemisia tridentata Nutt.</td>
<td>A. tridentata</td>
<td>mechanical</td>
<td>reduced herbivory; more branches; more flowers</td>
<td>F</td>
<td>Karban et al., 2006; 2012</td>
</tr>
<tr>
<td>Cuscuta pentagona Engelm.</td>
<td>Solanum lycopersicum L.</td>
<td>none</td>
<td>directed growth by the obligate, parasitic weed</td>
<td>L</td>
<td>Runyon et al., 2006</td>
</tr>
<tr>
<td>"</td>
<td>Impatiens walleriana Hook. f.</td>
<td>none</td>
<td>directed growth by the obligate, parasitic weed</td>
<td>L</td>
<td>Runyon et al., 2006</td>
</tr>
<tr>
<td>"</td>
<td>Triticum aestivum L.</td>
<td>none</td>
<td>directed growth by the obligate, parasitic weed</td>
<td>L</td>
<td>Runyon et al., 2006</td>
</tr>
<tr>
<td>Gossypium hirsutum L.</td>
<td>G. hirsutum</td>
<td>herbivory</td>
<td>reduced oviposition</td>
<td>L & F</td>
<td>Zakir et al., 2013</td>
</tr>
<tr>
<td>Hordeum vulgare L.</td>
<td>Chenopodium album L.</td>
<td>none</td>
<td>less acceptable to aphids</td>
<td>L & F</td>
<td>Ninkovic et al., 2009</td>
</tr>
<tr>
<td>"</td>
<td>Cirsium arvense (L.) Scop.</td>
<td>none</td>
<td>less acceptable to aphids; attracts aphid predator</td>
<td>L</td>
<td>Glinwood et al., 2004; Ninkovic & Pettersson, 2003</td>
</tr>
<tr>
<td>"</td>
<td>H. vulgare (Different cultivars to receiver.)</td>
<td>none</td>
<td>less acceptable to aphids; changes in leaf temperature</td>
<td>L</td>
<td>Pettersson et al., 1999; Ninkovic & Ahman, 2009</td>
</tr>
<tr>
<td>Medicago sativa L.</td>
<td>G. hirsutum</td>
<td>herbivory</td>
<td>reduced oviposition</td>
<td>L</td>
<td>Zakir et al., 2013</td>
</tr>
<tr>
<td>Nicotiana tabacum L.</td>
<td>N. tabacum</td>
<td>virus infection</td>
<td>increase in pathogenesis–related genes</td>
<td>L</td>
<td>Shulaev et al., 1997</td>
</tr>
<tr>
<td>Nicotiana attenuata Steud.</td>
<td>A. tridentata</td>
<td>mechanical</td>
<td>reduced herbivory; increased polyphenol oxidase; priming</td>
<td>F</td>
<td>Karban, 2001; Kessler et al., 2006</td>
</tr>
<tr>
<td>Phaseolus lunatus L.</td>
<td>P. lunatus</td>
<td>herbivory</td>
<td>attraction of predator; secretion of extrafloral</td>
<td>L</td>
<td>Choh et al., 2004</td>
</tr>
<tr>
<td>"</td>
<td>herbivory</td>
<td>reduced herbivory; faster growth</td>
<td>F</td>
<td>Heil & Bueno, 2007</td>
<td></td>
</tr>
<tr>
<td>"</td>
<td>herbivory</td>
<td>secretion of extrafloral</td>
<td>F</td>
<td>Kost & Heil,</td>
<td></td>
</tr>
</tbody>
</table>
nectar; attraction of parasitoids and predators

<table>
<thead>
<tr>
<th>Receiver plant</th>
<th>Volatile compound</th>
<th>Receiver response</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Achyranthes bidentata Blume</td>
<td>methyl jasmonate</td>
<td>increased emission of volatiles</td>
<td>Tamogami et al., 2008</td>
</tr>
<tr>
<td>Arabidopsis thaliana L.</td>
<td>4,8-dimethyl-1,3,7-nonatriene</td>
<td>upregulation of genes in ethylene and jasmonic acid pathways</td>
<td>Zhang et al., 2012</td>
</tr>
<tr>
<td>"</td>
<td>(E)-2-hexenal</td>
<td>induction of defence related genes; induced resistance to Botrytis cinerea</td>
<td>Bate & Rothstein, 1998; Kishimoto et al., 2005</td>
</tr>
<tr>
<td>"</td>
<td>(Z)-3-hexenal</td>
<td>induction of defence related genes; induced resistance to Botrytis cinerea</td>
<td>Kishimoto et al., 2005</td>
</tr>
<tr>
<td>"</td>
<td>(Z)-3-hexen-1-ol</td>
<td>induction of defence related genes; induced resistance to Botrytis cinerea</td>
<td>Kishimoto et al., 2005; Zhang et al., 2012</td>
</tr>
<tr>
<td>"</td>
<td>(Z)-jasmone</td>
<td>aphids repelled and parasitoids attracted</td>
<td>Pickett et al., 2007; Bruce et al., 2008</td>
</tr>
<tr>
<td>"</td>
<td>methyl jasmonate</td>
<td>elevation of defence related enzymes; increased green leaf volatile production</td>
<td>Avdiushko et al., 1995</td>
</tr>
<tr>
<td>"</td>
<td>myrcene</td>
<td>induction of defence related genes</td>
<td>Godard et al., 2008</td>
</tr>
<tr>
<td>"</td>
<td>ocimenes (mixture of E, Z and allo)</td>
<td>induction of defence related genes</td>
<td>Godard et al., 2008</td>
</tr>
<tr>
<td>"</td>
<td>allo-ocimene</td>
<td>induction of defence related genes; induced resistance to Botrytis cinerea</td>
<td>Kishimoto et al., 2005</td>
</tr>
<tr>
<td>"</td>
<td>4,8,12-trimethyl-1,3,7,11-trideca-tetraene</td>
<td>upregulation of genes in ethylene and jasmonic acid pathways</td>
<td>Zhang et al., 2012</td>
</tr>
<tr>
<td>Brassica napus L.</td>
<td>methyl jasmonate</td>
<td>increase in glucosinolates</td>
<td>Doughty et al., 1995</td>
</tr>
<tr>
<td>Citrus jambhiri Lush.</td>
<td>(E)-2-hexenal</td>
<td>induction of defence related genes</td>
<td>Gomi et al., 2003</td>
</tr>
<tr>
<td>"</td>
<td>(E)-2-hexen-1-ol</td>
<td>induction of defence related genes</td>
<td>Gomi et al., 2003</td>
</tr>
<tr>
<td>"</td>
<td>(Z)-3-hexen-1-ol</td>
<td>induction of defence related genes</td>
<td>Gomi et al., 2003</td>
</tr>
</tbody>
</table>

Table 2. Summary of reports of plants responding to individual volatile compounds
<table>
<thead>
<tr>
<th>Plant Species</th>
<th>Treatment</th>
<th>Effects</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cucumis sativus L.</td>
<td>methyl jasmonate</td>
<td>elevation of defence related enzymes; increased green leaf volatile production</td>
<td>Avdiushko et al., 1995</td>
</tr>
<tr>
<td>Gossypium hirsutum L.</td>
<td>methyl jasmonate</td>
<td>elevated levels of some terpenoids emitted</td>
<td>Rodriguez-Saona et al., 2001</td>
</tr>
<tr>
<td>Medicago sativa L.</td>
<td>methyl jasmonate</td>
<td>elevation of levels of trypsin inhibitors</td>
<td>Farmer & Ryan, 1990; Farmer et al., 1992</td>
</tr>
<tr>
<td>Nicotiana tabacum L.</td>
<td>methyl jasmonate</td>
<td>elevation of defence related enzymes; increased green leaf volatile production</td>
<td>Avdiushko et al., 1995</td>
</tr>
<tr>
<td>Nicotiana tabacum L.</td>
<td>methyl salicylate</td>
<td>increase in pathogenesis-related genes</td>
<td>Shulaev et al., 1997</td>
</tr>
<tr>
<td>Phaseolus lunatus L.</td>
<td>(Z)-3-hexen-1-yl acetate</td>
<td>extrafloral nectar induced</td>
<td>Kost & Heil, 2006</td>
</tr>
<tr>
<td>Populus deltoides × P. nigra</td>
<td>methyl salicylate</td>
<td>increased resistance to bacterial pathogen</td>
<td>Girón-Calva et al., 2012</td>
</tr>
<tr>
<td>Populus ×euramericana</td>
<td>nonanal</td>
<td>increased resistance to bacterial pathogen</td>
<td>Girón-Calva et al., 2012</td>
</tr>
<tr>
<td>Populus ×euramericana</td>
<td>benzothiazole</td>
<td>priming of defence genes and terpene volatile release</td>
<td>Frost et al., 2008b</td>
</tr>
<tr>
<td>Populus ×euramericana</td>
<td>methyl jasmonate</td>
<td>elevated levels of defence related enzymes</td>
<td>Tang et al., 2013</td>
</tr>
<tr>
<td>Solanum lycopersicum</td>
<td>methyl jasmonate</td>
<td>accumulation of proteinase inhibitors</td>
<td>Farmer & Ryan, 1990; Farmer et al., 1992</td>
</tr>
<tr>
<td>Populus ×euramericana</td>
<td>methyl salicylate</td>
<td>elevated levels of defence related enzymes</td>
<td>Tang et al., 2013</td>
</tr>
<tr>
<td>Zea mays L.</td>
<td>(Z)-3-hexenal</td>
<td>jasmonic acid produced; sesquiterpenes emitted</td>
<td>Engelberth et al., 2004</td>
</tr>
<tr>
<td>Populus ×euramericana</td>
<td>(Z)-3-hexen-1-ol</td>
<td>jasmonic acid produced; sesquiterpenes emitted</td>
<td>Engelberth et al., 2004</td>
</tr>
<tr>
<td>Populus ×euramericana</td>
<td>(Z)-3-hexen-1-yl acetate</td>
<td>jasmonic acid produced; sesquiterpenes emitted</td>
<td>Engelberth et al., 2004</td>
</tr>
<tr>
<td>Vicia faba L.</td>
<td>(Z)-jasmone</td>
<td>increased levels of terpenoids and attraction of parasitoids</td>
<td>Birkett et al., 2000</td>
</tr>
</tbody>
</table>

With more than twenty plant species now identified as receiving and responding to airborne chemicals, there can be little doubt that interplant signalling occurs. However, there remain many unanswered questions. One of these concerns the fitness costs and benefits of the process for both emitter and receiver (Bruin *et al*., 1995; Karban and Maron, 2002; Baldwin *et al*., 2006; Kessler *et al*., 2006; Frost *et al*., 2008a; Dicke and Baldwin, 2010), though in this respect it is important that teleological arguments are avoided. Plants emit volatile chemicals as a means of disposing of the unwanted products of secondary metabolism, membrane disruption, etc., and some of these compounds may then affect the behaviour of plants and insects in the surrounding community. Gases and volatile chemicals enter plants by a passive process of sorption and diffusion across cuticles or directly via stomata and may then be (a) used by the
plant, as in the case of carbon dioxide, (b) metabolised, as any xenobiotic would be, usually as
a prelude to disposal via root exudation as a conjugate or by re-volatilisation, or (c) simply re-
emitted unchanged. For instance, exogenous, gaseous methyl jasmonate is absorbed by the
plant and some is re-emitted unchanged while the remainder enters the symplasm and is
metabolised to the plant hormone, jasmonic acid (Tamogami et al., 2008).

Sorption of volatile compounds from the atmosphere into the plant cuticle is a
partitioning process that, in the absence of any diffusion either through the cuticle or in the air,
would reach equilibrium, the concentrations in the two phases depending mainly on the vapour
pressure and the lipophilicity of the compound, which is usually measured as the octanol-water
partition coefficient (Riederer et al., 2002). Since there is considerable movement of the air and
diffusion within it, the concentration in that phase will fall quickly and any absorbed compound
that has not diffused away from the surface of the cuticle will return to the vapour phase so that
equilibrium is restored. In practice, this means that all small lipophilic chemicals in the
atmosphere around the plant will not only be sorbed by the plant but also re-emitted to some
degree. The re-emission, by the receiving plant, of volatile compounds that originated from the
emitting plant was suggested during the great 'talking tree' debate as a possible mechanism for
interplant-induced defence (Bruin et al., 1995). This was indeed shown to be the case
experimentally when undamaged P. lunatus was observed to emit a similar blend of volatiles to
the one received from conspecifics infested with spider mites, even when the receiver plant was
treated with a protein-synthesis inhibitor to stop production of the volatiles (Choh et al., 2004).
The mechanism also explains the associational resistance to green leaf weevils, Polydrusus
flavipes De Geer, and birch aphids, Euceraphis betulae Koch, in Betula pendula Roth and B.
pubescens growing in mixed associations with Rhododendron tomentosum Harmaja. Leaves of
the birches were found to adsorb a group of insect repellent sesquiterpenoids emitted by R.
tomentosum and re-release them into the atmosphere (Himanen et al., 2010).

Questions about the range of interplant communications in nature are like those
concerning the length of a piece of string as there are many factors to consider. Firstly, there are
the properties of the compounds themselves, in particular stability in air, lipophilicity and
vapour pressure, which all affect the concentration of the compound in the air and how it will
be diluted with distance. Then, there are the weather conditions, which can have a large
influence on how the volatiles will behave, especially temperature, strength and direction of
any wind and humidity or even rainfall. The density of planting will also have an influence, as
the concentration of volatiles in the vapour phase will decrease with each plant that absorbs
them, so that the fewer plants there are between emitter and receiver, the higher will be the concentration that reaches that receiver.

Nonetheless, some reports of field studies include estimates of, or experiments to determine, the distance beyond which the effects are not seen. Many of these studies by Karban and his colleagues concern the emission by clipped sagebrush plants, *A. tridentata*, of volatiles that induce a response in neighbouring plants which are less than 15 cm from the damaged plant in the case of wild tobacco, *Nicotiana attenuata* Steud., (Karban *et al*., 2000; Karban and Maron, 2002) but which can be up to 60 cm away in the case of conspecifics (Karban *et al*., 2006). Preston *et al*. (2004) showed that the concentration of methyl jasmonate in the air above damaged sagebrush was not significantly reduced for at least 40 cm. In a study by Zakir *et al*. (2013), using three different plant species, oviposition by *Spodoptera littoralis* Boisduval was shown to be reduced on plants up to 90 cm from damaged plants of another species. Even greater distances were shown to be possible in stands of alder trees, *Alnus glutinosa* (L.) Gaertn., where effects were observed in trees up to 10 m away from a defoliated tree (Dolch and Tscharntke, 2000). As these measurements depend on the observation of a detectable response, they should not be taken just as a measurement of distance travelled by the volatile signal but also as a measure of the strength of the response in the receiver plant.

Below ground, plant roots can also emit small lipophilic molecules that are relatively volatile and can therefore travel within the airspaces in the soil, although it is likely that the majority of compounds exuded by roots are more polar, conferring water solubility but not volatility. Root cuticles absorb organic compounds in the same way that above-ground parts of plants do, although in normal circumstances there is here a multi-phase partition involved between the cuticle, the vapour phase, the soil organic matter and an aqueous phase. As plant-plant interactions below ground involve a further sophistication in that common mycelial networks, that form connections between neighbouring plants, can transfer warning signals of pathogen and herbivore attack (Song *et al*., 2010; Babikova *et al*., 2013a; 2013b), the specific contribution of airborne interactions in soil is very difficult to assess and has so far not been studied.

Conclusions

There is no question that most higher plants, if not all, emit volatile chemicals in response to abiotic and biotic stress, in addition to those released into the atmosphere constitutively. Some of these compounds have been shown to affect the behaviour of herbivorous insects and mites, their predators and parasitoids, and even hyperparasitoids.
physicochemical properties of the compounds, in particular their lipophilicity and vapour pressure, are generally such that they are passively absorbed from the atmosphere by plant cuticles of the same or neighbouring plants, whether they are of the same or different species. The absorbed chemicals may then diffuse into the plant symplasm or be re-emitted into the atmosphere. Thus, there is interplant communication in that a signal is transmitted from one plant to another and probably all species of higher plants participate in this process.

The questions that then arise are (1) whether the receiving plant responds in any way to the absorbed chemicals, as is the case with, for example, methyl jasmonate and cis-jasmone, and (2) if the amount of the compound that enters the receiving plant is sufficient to initiate that response. In case the answer to the second question, regardless of the answer to the first, is negative, then there is no apparent communication, but if the answer to both is affirmative, there is clear evidence of plant-plant communication through the vapour phase. In most cases this may only be measurable in the laboratory and even then only if closed chambers or limited diffusion of headspace vapours are employed. In the field, the observation of plant-plant communication is much more difficult because there are so many factors involved, which is why there are so few reports in the literature. However, a strong defensive response to a small transmitted signal could contribute to the natural protection of crop plants from herbivores. For example, the work of Pettersson and colleagues suggests that planting mixtures of barley varieties instead of monocultures could reduce aphid damage within the crop (Pettersson et al., 1999; Ninkovic et al., 2002).

If a transmitted signal is too small for practical crop defence purposes, it is possible to boost it by companion planting with species that emit larger amounts of the effective chemical (Pickett et al., 2014) or even by application of the compound itself as a defence activator, as has been demonstrated for cis-jasmone (Bruce et al., 2003).

The great talking tree debate that followed the early discoveries of airborne plant-plant communication has been assigned to history. Any further debate on the general ecology and mechanisms of plant-plant communication must include discussion on how best to utilise this phenomenon, which is here proposed to be universal, for crop protection and increasing the sustainability of food production.

Acknowledgements

Rothamsted Research receives grant-aided support from the Biotechnology and Biological Sciences Research Council (BBSRC), UK. The author thanks three reviewers for their useful comments.
References

